Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 650: 123681, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38070661

RESUMEN

Twin-screw wet granulation is an emerging continuous manufacturing technology for solid oral dosage forms. This technology has been successfully employed for the commercial manufacture of immediate-released tablets. However, the higher polymer content in extended-release (ER) formulations may present challenges in developing and operating within a desired design space. The work described here used a systematic approach for defining the optimum design space by understanding the effects of the screw design, operating parameters, and their interactions on the critical characteristics of granules and ER tablets. The impacts of screw speed, powder feeding rate, and the number of kneading (KEs) and sizing elements on granules and tablets characteristics were investigated by employing a definitive screening design. A semi-mechanistic model was used to calculate the residence time distribution parameters and validated using the tracers. The results showed that an increase in screw speed decreased the mean residence time of the material within the barrel, while an increase in the powder feeding rate or number of KEs did the opposite and increased the barrel residence time. Screw design and operating parameters affected the flow and bulk characteristics of granules. The screw speed was the most significant factor impacting the tablet's breaking strength. The dissolution profiles revealed that granule characteristics mainly influenced the early phase of drug release. This study demonstrated that a simultaneous optimization of both operating and screw design parameters was beneficial in producing ER granules and tablets of desired performance characteristics while mitigating any failure risks, such as swelling during processing.


Asunto(s)
Excipientes , Tecnología Farmacéutica , Tecnología Farmacéutica/métodos , Polvos , Liberación de Fármacos , Comprimidos , Preparaciones de Acción Retardada , Composición de Medicamentos/métodos , Tamaño de la Partícula
2.
Pharm Res ; 40(12): 2903-2916, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37700106

RESUMEN

PURPOSE: This study evaluates the use of the closed feed frame as a material sparing approach to develop near-infrared (NIR) spectroscopic calibration models for monitoring blend uniformity. The effect of shear induced by recirculation on NIR spectra was also studied. METHODS: Calibration models were developed using NIR spectra obtained in the closed feed frame for two cases. For case 2, blends that flowed through the open feed frame were predicted with the model. The shear effect of the feed frame on the blends was assessed through the characterization of powder properties before and after recirculation. RESULTS: The physical characterization of the blends confirmed that the powder properties were not altered after recirculation within the closed feed frame. Both calibration models provided highly accurate predictions of the test sets with low bias (0.03% w/w and -0.06% w/w) and relative standard error of prediction (1.9% and 3.7%), respectively. The predictive performance of the calibration models was not affected by the shear effect. CONCLUSION: Recirculation within the closed feed frame did not change the physical properties of the blends studied. The prediction of blends flowing through the open feed frame was possible with a calibration model developed in the closed feed frame. The closed feed frame could reduce the materials needed to develop calibration models by more than 90%.


Asunto(s)
Espectroscopía Infrarroja Corta , Tecnología Farmacéutica , Composición de Medicamentos/métodos , Calibración , Polvos/química , Espectroscopía Infrarroja Corta/métodos , Comprimidos/química , Tecnología Farmacéutica/métodos
3.
Int J Pharm ; 639: 122934, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37061209

RESUMEN

This study describes the first implementation of Raman spectrometer in a stream sampler for the in-line monitoring of low drug concentration in poor flowability powder blends. Raman spectra were continuously acquired as the powder blends flowed through the stream sampler operating with a paddle wheel speed of 10 RPM and used to develop the calibration models. A calibration model was developed to quantify caffeine concentration from 1.50 to 4.50% w/w using Partial Least Squares Regression (PLS-R). Three test set blends were used to assess the prediction errors of the calibration model. Caffeine concentration was predicted for the test set blends with a root mean square error of prediction of 0.21% w/w and a low bias of -0.03% w/w. The calibration model showed good prediction performance with an estimated sample mass of 83 mg. Variographic analysis demonstrated the low process variance of the real-time spectral acquisition through minimum practical error and sill values. The results showed the ability of the Raman spectrometer coupled with the stream sampler to monitor low drug concentration for poor flowability blends.


Asunto(s)
Cafeína , Espectrometría Raman , Polvos/química , Ríos , Espectroscopía Infrarroja Corta/métodos , Calibración , Análisis de los Mínimos Cuadrados
4.
Int J Pharm ; 613: 121417, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34965466

RESUMEN

This study reports the use of Raman and Near-infrared (NIR) spectroscopy to simultaneously monitor the drug concentration in flowing powder blends within a three-chamber feed frame. The Raman probe was located at the top of the dosing chamber, while the NIR probe was located at the top of the filling chamber. The Raman and NIR spectra were continuously acquired while the powder blends flowed through the feed frame. Calibration models were developed with spectra from a total of five calibration blends ranging in caffeine concentration among 3.50 and 6.50% w/w. These models were optimized to predict three test set blends of 4.00, 5.00, and 6.00% w/w caffeine. The results showed a high predictive ability of the models based on root mean square error of predictions of 0.174 and 0.235% w/w for NIR and Raman spectroscopic models, respectively. Concentration profiles with higher variability were observed for the Raman spectroscopy predictions. An estimate of the mass analyzed by each spectrum showed that a NIR spectrum analyzes approximately 4.5 times the mass analyzed by a Raman spectrum; despite these differences in the mass analyzed, blend uniformity results are equivalent between techniques. Variographic analysis demonstrated that both techniques have significantly low sampling errors for the real-time monitoring process of drug concentration within the feed frame.


Asunto(s)
Espectroscopía Infrarroja Corta , Calibración , Composición de Medicamentos , Polvos , Comprimidos
5.
Int J Pharm ; 606: 120910, 2021 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-34298101

RESUMEN

This work presents the evaluation of a co-processed material for high-load dose formulations and its real-time monitoring by near-infrared (NIR) spectroscopy at the tablet press feed frame. The powder and tableting properties of co-processed material blends were evaluated and compared to the blend of the individual excipients. The formulations with the co-processed material showed excellent flow properties and were superior to the physical blend of individual excipients. Two NIR spectroscopic methods were developed to monitor ibuprofen concentration between 40.0 and 60.0% w/w, one method using a co-processed material as the main excipient and the other using the blend of the individual excipients. The NIR spectra were obtained while the powder blends flowed within a three-chamber feed frame from a Fette 3090 tablet press. The NIR spectroscopic method with the co-processed material presented better performance with significantly lower prediction error. Variographic analysis demonstrated that using the co-processed material considerably reduces the sampling and analytical errors in the in-line determination of ibuprofen. The authors understand that this is the first study where the sampling errors are evaluated as a function of the excipients used in the pharmaceutical formulation. This study demonstrated that selecting a suitable excipient for the formulation helps optimize the manufacturing process, reducing the magnitude of the total measurement error.


Asunto(s)
Excipientes , Tecnología Farmacéutica , Composición de Medicamentos , Polvos , Comprimidos
6.
J Pharm Biomed Anal ; 194: 113785, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33280992

RESUMEN

A chute was designed following the principles of the Theory of Sampling to minimize the variations in powder flow and provide all particles in the flowing blends with the same opportunity of being selected as a sample. The design also reduces the thickness of the chute to allow the analysis of a higher portion of the flowing blends by a near infrared spectrometer. The blends that flowed through the chute had Carr's index values that fluctuated between 23 and 25 percent, indicating passable flowability. A powder fowling evaluation demonstrated that there was no powder accumulation at the inspection window of the chute. The mass flow rate profiles indicated that the system achieves mass steady-state in approximately 30 s and a throughput of 30 kg/h which makes it suitable for continuous manufacturing operations. An in-line NIR calibration model was developed to quantify caffeine concentrations between 1.51 and 4.52 % w/w. The spectra obtained from each experiment had minimal baseline variation. The developed NIR method was robust to throughput changes up to approximately ±7 %. The test blends in the caffeine concentration range between 2.02 % w/w and 4.02 % w/w met the dose uniformity requirements of the Ph.Eur. 9.0, chapter 2.9.47. Variographic analysis was done to estimate the analytical and sampling errors which yielded values below 0.01 (%w/w)2. The obtained results showed that this chute could also be used in a continuous manufacturing line or other applications with flowing powders.


Asunto(s)
Excipientes , Tecnología Farmacéutica , Calibración , Polvos , Espectroscopía Infrarroja Corta , Comprimidos
7.
Int J Pharm ; 588: 119726, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32758592

RESUMEN

This study investigates the performance of a sampling interface for monitoring cohesive, flowing powder formulations with Hausner's Ratio and Carr's Index higher than 1.5 and 35%, respectively. The sampler device was operated in combination with near-infrared (NIR) spectroscopy to quantify ibuprofen concentrations between 1.5 and 4.5% w/w. NIR spectra also provided essential information to study the process dynamics within the sampler. The 200 spectra per blend obtained demonstrated a continuous powder flow with no evidence of agglomerates or segregation within the sampler for a blend of 6 kg. A NIR calibration model was optimized to predict independent test blends, delivering root mean square error of predictions and bias under 0.1% w/w. The test blends were within specifications according to the requirements of European Pharmacopeia. Variographic analysis demonstrated that the sampler device may determine low drug concentration in cohesive powder blends, presenting sampling errors below 0.011 (%w/w)2. This analysis also demonstrated that an increase in the blend compressibility leads to a slight rise in sampling errors within the sampler device. The sampler device offers statistical robustness in the evaluation of blend uniformity, providing greater confidence in the quality determination of the cohesive powder blends without significantly affecting its flow properties.


Asunto(s)
Excipientes/análisis , Ibuprofeno/análisis , Espectroscopía Infrarroja Corta , Tecnología Farmacéutica , Celulosa/análisis , Composición de Medicamentos , Excipientes/normas , Ibuprofeno/normas , Lactosa/análisis , Tamaño de la Partícula , Polvos , Control de Calidad , Espectroscopía Infrarroja Corta/normas , Ácidos Esteáricos/análisis , Tecnología Farmacéutica/normas
8.
Int J Pharm ; 583: 119358, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32335081

RESUMEN

A novel sampler device for flowing powders was tested to quantify drug concentrations as low as 0.76% w/w in pharmaceutical powder blends. The sampler device was developed based on the powder flow behavior within a tablet press feed frame, following the principles laid down in the Theory of Sampling. Two Near-Infrared (NIR) spectroscopic calibration models were developed with powder blends that varied from 0.52 to 2.52% w/w and 1.51-4.52% w/w. The calibration models were able to determine caffeine concentration in test set blends with root mean square error of predictions and bias below 0.1% w/w. Samples were collected from the sampler device and analyzed by ultraviolet-visible (UV-Vis) to determine the caffeine concentration. A high agreement between the in-line NIR predictions and the sampled UV-Vis results was found. The paddle wheel speed in the sampler can be varied up to ±10% without affecting NIR predictions; however, the models did not respond adequately to a 25% increase in this speed. Variographic analysis showed that the sampler device may quantify low drug concentrations with nugget effects below 0.0050 (%w/w)2. This study demonstrate that the sampler device may handle throughputs up to 45 kg/h, without significantly affecting the physical properties of powder blends.


Asunto(s)
Polvos/análisis , Tecnología Farmacéutica/instrumentación , Cafeína/análisis , Calibración , Celulosa/análisis , Diseño de Equipo , Excipientes/análisis , Lactosa/análisis , Reología , Espectroscopía Infrarroja Corta , Comprimidos , Tecnología Farmacéutica/métodos
9.
Int J Pharm ; 574: 118874, 2020 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-31837408

RESUMEN

An innovative chute and stream sampler system for flowing powders has been developed and tested. The system is designed for representative sampling based on the principles of the Theory of Sampling (TOS). The sampling system was used in combination with near infrared (NIR) spectroscopy to determine the drug concentration of flowing powders. The system is comprised of three parts: a chute, a stream sampler and a sample collection port. The NIR spectra were obtained at the chute, before entering the sampler, and as the powder flowed through the stream sampler. Samples were also collected from the sample collection port to be analyzed using an ultraviolet-visible (UV-Vis) reference method to determine drug content. A total of eight pharmaceutical powder blends, ranging in concentration from 10.5(%w/w) to 19.5(%w/w) of caffeine, were used to test the sampling system. Materials were characterized before blends were made to provide information on flow properties. The throughput of the system was between 30 and 35 kg/h based on the flow properties of the blend. Drug concentration was effectively determined at the chute and stream sampler. The NIR calibration models showed low root mean squared errors of prediction, 0.65(%w/w) and 0.51(%w/w), for the chute and stream sampler respectively. The NIR calibration models also showed low bias values -0.36(%w/w) at the chute and 0.057(%w/w) at the stream sampler. Significant agreement was obtained between the results from the nondestructive NIR versus the destructive UV-Vis method. Variographic analysis was performed to estimate the analytical and sampling errors when determining the drug concentration at the chute and stream sampler respectively. The variographic analysis showed low analytical errors, 0.103(%w/w)2 and 0.181(%w/w)2 at the chute and stream sampler respectively. The analysis also showed that the minimum practical error (MPE) was around 0.2(%w/w)2 at both chute and stream sampler.


Asunto(s)
Polvos/química , Cafeína/química , Calibración , Composición de Medicamentos/métodos , Espectroscopía Infrarroja Corta/métodos , Rayos Ultravioleta
10.
Int J Pharm ; 572: 118728, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31682965

RESUMEN

The feed frame is a force-feeding device used in the die filling process. The die filling process is crucial within pharmaceutical manufacturing to guarantee the critical quality attributes of the tablets. In recent years, interest in this unit has increased because it can affect the properties of the powder blend and tablets, and because of the success in real time monitoring of powder blend uniformity potential for Process Analytical Technology as described in this review. The review focuses on the recent advances in understanding the powder flow behavior inside the feed frame and how the residence time distribution of the powder within the feed frame is affected by the operating conditions and design parameters. Furthermore, this review also highlights the effect of the paddle wheel design and feed frame process parameters on the tablet weight, the principal variable for measuring die filling performance.


Asunto(s)
Comprimidos , Tecnología Farmacéutica , Polvos , Reología
11.
Int J Pharm ; 560: 322-333, 2019 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-30763679

RESUMEN

Blend uniformity was monitored throughout a continuous manufacturing (CM) process by near infrared (NIR) spectroscopic measurements of flowing blends and compared to the drug concentration in the tablets. The NIR spectra were obtained through the chute after the blender and within the feed frame, while transmission spectra were obtained for the tablets. The CM process was performed with semi-fine acetaminophen blends at 10.0% (w/w). The blender was operated at 250 RPM, for best performance, and 106 and 495 rpm where a lower mixing efficiency was expected. The variation in blender RPM increased the variation in drug concentration at the chute but not at the feed frame. Statistical results show that the drug concentration of tablets can be predicted, with great accuracy, from blends within the feed frame. This study demonstrated a mixing effect within the feed frame, which contribute to a 60% decrease in the relative standard deviation of the drug concentration, when compared to the chute. Variographic analysis showed that the minimum sampling and analytical error was five times less in the feed frame than the chute. This study demonstrates that the feed frame is an ideal location for monitoring the drug concentration of powder blends for CM processes.


Asunto(s)
Acetaminofén/administración & dosificación , Excipientes/química , Espectroscopía Infrarroja Corta/métodos , Tecnología Farmacéutica/métodos , Acetaminofén/química , Química Farmacéutica/métodos , Composición de Medicamentos/métodos , Polvos , Reproducibilidad de los Resultados , Comprimidos
12.
J Pharm Biomed Anal ; 154: 384-396, 2018 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-29571136

RESUMEN

Near infrared (NIR) spectroscopy was used to determine the drug concentration in 3% (w/w) acetaminophen blends within the complex flow regime of the tablet press feed frame just before tablet compaction. NIR spectra also provided valuable information on the powder flow behavior within the feed frame and were used to track when a process enters or leaves the steady state. A partial least squares regression calibration model was developed with powder mixtures that varied from 1.5 to 4.5% (w/w) by obtaining 135 spectra after steady state for each concentration while the feed frame and die disc operated at 30.5 revolutions per minute (rpm). The calibration model determined drug concentration in validation blends with a root mean square error of prediction and bias below 0.1% (w/w). The robustness of the NIR calibration model was evaluated by determining the effect of variation on the operating conditions (paddle wheel speed and die disc speed) on NIR predictions. This work found that the paddle wheel speed can be increased up to 30% and the die disc speed decrease 10% without affecting NIR predictions. The results demonstrated that paddle wheel speed has a significant effect on the wave powder behavior (frequency and amplitude) but does not have significant effect on the mass hold-up within feed frame. The die disc speed does not affect wave powder behavior but affects significantly the mass hold-up inside the feed frame. This information can be used to reduce the tablet weight variability and ensure that this critical attribute is met.


Asunto(s)
Acetaminofén/química , Polvos/química , Comprimidos/química , Calibración , Composición de Medicamentos/métodos , Análisis de los Mínimos Cuadrados , Espectroscopía Infrarroja Corta/métodos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...